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The Debye equation gives the spherically averaged diffracted intensity from a

group of atoms and is exact under the ®rst Born, or kinematic, approximation.

Algebraic simpli®cations are developed for calculating multiplicities in the

double summation and are used in a new algorithm for implementing this

equation. The results for cubic, body-centred cubic and face-centred cubic

systems agree exactly with previous methods while achieving substantial

computational advantage.

1. Powder diffraction with Debye's equation

Debye's equation for the intensity diffracted by an array of atoms,

taking all orientations with equal probability, was published in 1915

(Debye, 1915) and is normally written

I�Q� �P
i

P
j

fi fj sinc�Qrij�; �1�

where sinc�x� � sin�x�=x. The scattering factors, fi and fj, are in

general functions of Q � 4� sin���=� but, in the case of neutron

diffraction, are constants termed scattering lengths. This equation is

exact in the ®rst Born, or kinematic, approximation and deals

explicitly with the small-angle scattering as well as the scattering to

the Bragg positions. The equation can be applied to powders that

show no preferred orientation. The summation of (1) extends over all

atoms i and j in the array, with the value of sinc�Qrij� equal to unity

for self terms (i � j). A derivation of the Debye equation can be

found in Warren (1990).

In this communication, we present an ef®cient algorithm for

calculating the diffracted intensity ab initio from the Debye equation,

based on an algebraic solution of equation (1), which provides

substantial computational advantage over methods of direct

summation. An ef®cient algorithm for the computation of this

equation under general circumstances may allow its use for the ®tting

of powder patterns, possibly as an alternative to the Rietveld method

(Rietveld, 1967).

It is known that the number of terms in the summation of the

Debye equation can be considerably reduced by noting that it can be

written in terms of a distance multiplicity function, M�r� (Marciniak et

al., 1996). This function effectively evaluates all interatomic distances

within the crystallite and counts the number of pairs separated

by each distance. Using this approach, we can rewrite the Debye

equation as

I�Q� �P
rij

M�rij� fi fj sinc�Qrij�; �2�

where summation is over all possible interatomic separation

distances. With the approach of Marciniak et al. (1996), in which the

distance from each atom to all others is calculated directly, the

evaluation of M�rij� for a system containing n atoms requires n�nÿ 1�
operations, growing approximately as the ®fth power of the number

of unit cells, N (Marciniak et al., 1996).

Taking the structure shown in Fig. 1, we can reduce the calculation

of M�rij� to a single evaluation for each possible interatomic

separation, which scales, at worst, as the third power of the system

size. To determine the value of the multiplicity function for this

distance, we note that each cell will contain four body diagonals,

giving a count of eight such separations. If the cell has a zero extent in

any one direction, however, then there are only four separations at

this distance. It is easily seen that this extends to two separations with

only one non-zero extent and unity when all are zero, giving 2�, where

� is the number of dx, dy and dz that are non-zero. The remainder of

the form of the multiplicity function comes from determining the

number of possible arrangements for which a cell of the given extent

®ts within the crystallite. It can be readily veri®ed from Fig. 1 that the

®nal form is

M�dx; dy; dz� � 2��Nx � 1ÿ dx��Ny � 1ÿ dy��Nz � 1ÿ dz�: �3�

Now, the body-centred cubic (b.c.c.) lattice essentially consists of a

second simple cubic lattice displaced from the ®rst by half the unit cell

body diagonal. Thus, we may use (3) directly to evaluate the multi-

plicity for separations within either of these two lattices. This leaves

only the separations between the lattices to be evaluated, which are

only relevant when the cell has a non-zero extent in all directions.

Evaluating the cell multiplicity and distance gives

M�dx; dy; dz� � 16�Nx � 1ÿ dx��Ny � 1ÿ dy��Nz � 1ÿ dz� �4�
r�dx; dy; dz� � ��dx ÿ 1

2 �2 � �dy ÿ 1
2 �2 � �dz ÿ 1

2 �2�1=2: �5�
Figure 1
Simple cubic crystallite showing the arbitrary calculation cell of extent dx , dy and dz

in the x, y and z directions.
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It is possible to arrange the evaluation of equations (3), (4) and (5) in

a single loop over the allowable values of dx, dy and dz, giving a

solution scaling as the number of unit cells, N � NxNyNz. Following

a method exactly analogous to that of the b.c.c. case allows the

evaluation of the face-centred cubic (f.c.c.) crystal structure.

Considering the same arbitrary cell as for the basic cubic lattice, we

may determine the separations for atoms within each of these lattices.

Furthermore, the four expressions can be combined into a single

expression as

M�dx; dy; dz� � 2���Nx � 1ÿ dx��Ny � 1ÿ dy��Nz � 1ÿ dz�
� �Nx ÿ dx��Ny ÿ dy��Nz � 1ÿ dz�
� �Nx ÿ dx��Ny � 1ÿ dy��Nz ÿ dz�
� �Nx � 1ÿ dx��Ny ÿ dy��Nz ÿ dz��: �6�

Examination of (6) reveals the four interlocked simple cubic lattices

and their altered extents. Furthermore, following an approach similar

to that of the b.c.c. internal separations, it can be shown that for the

same arbitrary cell as Fig. 1 (with only the base cubic lattice shown)

the cross terms can be evaluated using the formulae below. Owing to

the nature of the f.c.c. lattice, these distances are only valid when a

given pair of the arbitrary cell extents are non-zero. These formulae

represent the distances from the base cell atom to all atoms within the

three additional lattices and between the additional lattices.

For dx 6� 0 and dy 6� 0,

r�dx; dy; dz� � ��dx ÿ 1
2 �2 � �dy ÿ 1

2 �2 � d2
z�1=2 �7�

M�dx; dy; dz� � 2��1�Nx � 1ÿ dx��Ny � 1ÿ dy��2Nz � 1ÿ 2dz� �8�
and likewise for dx 6� 0; dz 6� 0 and dy 6� 0; dz 6� 0.

A set of routines were written in the MATLAB matrix program-

ming language to calculate the multiplicity function using both the

traditional approach (Marciniak et al., 1996) and the new algorithm.

These routines were used to generate the powder diffraction pro®le

for cubic crystallites with extent 3� 3� 3 in each of the cubic, body-

centred cubic and face-centred cubic structures, and in addition a

f.c.c. lattice of size 50� 50� 50 for a more realistic pattern. The

results of these calculations are shown in Fig. 2. The patterns show a

formal divergence for small-angle scattering and this part of the

curve, though predicted accurately by this method under the ®rst

Born approximation, is omitted for convenience.

Of central interest here is the improved ef®ciency of the calcula-

tions. Table 1 shows the number of ¯oating-point operations (Nflops)

required to perform the evaluation of the multiplicity function. It can

be readily veri®ed that the traditional approach scales as reported in

Marciniak et al. (1996) with the addition of the self-terms. The

resulting relationship has the form Nflops � 10� n2, where the crys-

tals contain 8, 64, 9, 91, 14 and 172 atoms, respectively, and where the

factor of ten is a result of the speci®c MATLAB code used. Two

features are apparent in the new approach: ®rstly, the improved

computational ef®ciency as a result of the different scaling relation

with N; and, secondly, the minor increases in Nflops as the structure

type changes. The latter can be associated directly with the use of an

additional evaluation per calculation cell for the b.c.c. case and three

additional calculations per calculation cell for the f.c.c. case, corre-

sponding to the interlattice distances. Now, with ten cells along the

side of a simple cubic crystal, the new approach requires 22812

operations whereas the traditional approach requires approximately

17.7 million. Furthermore, the scaling is consistent with the antici-

pated N3, where N is the number of cells along a side.

We expect the computational advantage of the new approach may

eventually yield a signi®cant improvement in the ®eld of powder

identi®cation. Although the solution presented in this paper

considers only cubic crystallite structures, this method can be

extended to encompass triclinic lattices in a straightforward manner.

A solution for and ellipsoidal crystallite of general shape is currently

being sought. The incorporation of these two features within this

approach is both achievable and signi®cant.

Further improvements can be made through noting that each

step of the solution is independent of all others, allowing parallel

processing to be implemented. It is likely that a real-time powder

®tting method can be developed in which the data can be ®tted during

or immediately following acquisition. This method, like the Rietveld

method, utilizes the entire powder diffraction curve and therefore

allows a signi®cantly higher level of certainty in an identi®cation.

The utilization of algebraic techniques to develop a new algorithm

for the calculation of the distance multiplicity function allows

substantial improvement in computational ef®ciency over the tradi-

tional approach. Indeed, this approach provides such a computational

advantage that the development of a real-time powder pattern ®tting

system appears possible.
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Figure 2
Results of traditional and new calculations using the Debye equation for a face-
centred cubic lattice of extent 3 � 3 � 3 unit cells. Also shown is the result of the
calculation for a more realistic crystallite of size 50 � 50 � 50 unit cells, where
several of the major lines are identi®ed. The small-angle scattering has been
omitted for convenience.

Table 1
The number of ¯oating-point operations required to determine M�rij� for various
numbers of unit cells in each crystallite.

Nx � Ny � Nz Traditional New

Cubic 1� 1� 1 637 145
Cubic 3� 3� 3 40942 1118
B.c.c. 1� 1� 1 812 219
B.c.c. 3� 3� 3 82877 1918
F.c.c. 1� 1� 1 1976 443
F.c.c. 3� 3� 3 296053 4820


